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Abstract—In this new research, we expand on our previous
system for vocal fatigue detection by adding five new features
in the classifier. We also perform further testing on 37 test
subjects. The goals were: 1) to classify subjects performing
normal versus simulated pressed vocal gestures; 2) to distinguish
vocally healthy from vocally fatigued subjects as determined by
VFI score on factor 1; and 3) to determine the validity of the
labels vis-a-vis the choice of this same VFI-factor-1 boundary.
As the results demonstrated, the choice of classifier and the
new features were quite appropriate, while there is margin for
better choices of the VFI-factor-1 boundary.

I. INTRODUCTION

Voice disorders are a serious threat to a teacher’s career.
Teachers with a history of voice problems while student
teachers have an almost nine-fold greater chance of devel-
oping a voice disorder [1, 2]. However, while symptoms of
vocal effort and vocal fatigue emerge with teaching, signs of
these symptoms are often elusive during clinical evaluations.
The aim of this paper is to demonstrate: (i) that it is
possible to use surface EMG (sEMG) of the anterior neck to
classify voice productions. That is, to separate normal voice
productions from voices known to have symptoms of vocal
fatigue based on the Vocal Fatigue Index (VFI), a self-report
questionnaire [3]; and (ii) that the proposed classification
system is able to achieve preliminarily detection of clinical
vocal fatigue based on the VFI.

II. BACKGROUND

A. Vocal Fatigue

The most common vocal symptoms in teachers are vocal
fatigue, vocal effort, and hoarseness [4]. Such symptoms are
typical for hyperfunctional voice disorders, also known as
muscle tension dysphonia (MTD). In the meantime, the rise
of wireless and ambulatory monitoring devices for sEMG
facilitates the study of extralaryngeal processes underlying
vocal fatigue. The perception of increased vocal effort/fatigue
and measures of extralaryngeal activity are intricately linked
[5]. Vocal effort is believed to be in part the result of
compensatory extralaryngeal activity to maintain adequate
voicing during vocal fatigue[6]. However, the detection of
vocal fatigue and early signs of MTD are often evasive [7],
both in the screening and clinical setting. Consequently, there

is a need to improve early detection of preclinical voice
problems.

B. sEMG Pattern Recognition

In our first study presented in [8], a hierarchical classifier
based on source signal separation, named HiGUSSS [9],
detected vocal gestures using four sEMG channels positioned
at the anterior neck. In that study, six normal voice gestures
were tested and the system achieved overall accuracy of 85%.
More recently in [10], the same classifier was applied to
a larger set of both normal and simulated pressed voice
gestures, from ten test subjects. A total of one hundred
gestures were considered for this second experiment and the
classifier achieved overall accuracy of 85% for classifying
the ten distinct gestures and 95% for classifying between the
normal and simulated pressed voice groups.

In this paper, we continue those studies by expanding on
our selection of subjects to include individuals with actual
vocal fatigue.

III. EXPERIMENTAL SETUP AND PROPOSED METHOD

A. Test Subjects

This study included data from 37 females, ages 21-39
years. All subjects were in good general and vocal health,
by self-report. None of the subjects had a history of voice
disorders or vocal fold lesions per laryngeal videostroboscopy
(M.D.), based on agreement by M.D. and an otolaryngologist
experienced in voice (M.P.). Each subject was asked to
complete the Vocal Fatigue Index (VFI) questionnaire [3].
The questionnaire was completed on the first factor, Tiredness
and Avoidance, during pre-screening and then again in full
during the experiment. The experimental procedures involv-
ing human subjects described in this paper were approved
by the University of Missouri Institutional Review Board. In
this paper, we used the VFI scores on the first factor from
the day of the experiment. Among all 37 subjects, the mean
VFI score on factor 1 was 5.703 with a standard deviation
of 6.046. However, we used the mean and standard deviation
data from [3] for assigning the Vocally Healthy and Vocally
Fatigued labels.



Figure 1. The system setup for data collection

B. Data Acquisition

Figure 1 illustrates the system setup for data collection.
The equipment was installed in an audiology soundbooth
(IAC Acoustics, Bronx, New York). The signals captured
by a head-worn condenser microphone (Model C520, AKG,
Harman, Austria) were sent to an audio amplifier (Scarlett i2i,
Focusrite, High Wycombe, UK) before being sampled into
digital form and saved by a 16/35 PowerLab (ADInstruments,
Dunedin, New Zealand).

At the same time, four sEMG signals were collected by
wireless sensors (TrignoTM Mini, Delsys, USA) connected to
a base station. According to the manufacturer, this type of
sensor is suited for recording sEMG on small and “difficult-
to-isolate” muscles. For this study, we used the same elec-
trode placement as in [10]. Both the audio amplifier and the
sEMG base station were connected to the PowerLab, which
performed simultaneous sampling of all inputs. The sampling
rate was set to 4kHz for the sEMG signal and 20kHz for
audio signals with 16-bit quantization. In this study we focus
on the sEMG data only.

C. Data Collection Protocol

After each subject completed the questionnaire (VFI) and
received training by a certified speech-language pathologist
(M.D.) to produce vowels with a pressed voice, we used
a caliper (Lange Skinfold Caliper, Beta Technology, Cam-
bridge, MD) to measure their skinfold thickness overlying
the submental and infrahyoid muscles, where the electrodes
were placed. This measurement was performed three times to
obtain an average thickness value. Next, each subject started
the data collection (both sEMG and acoustic) by producing
a series of normal and simulated pressed voice gestures
(vowels) broken up by syllables and sentences. At the end,
we asked each subject to press their chin on a dynamometer
(Chatillon LG-050 with curved compression fixture SPK-
FMG-142, Ametek, Largo, FL) to collect sEMG data during
maximum voluntary contraction (MVC) and submaximal
voluntary contraction (50% MVC) with 1-min rest intervals
between collections. This entire sequence is detailed in Table
I.

Table I
EXPERIMENT PROTOCOL FOR SEMG VOICE DATA COLLECTION.

Task Description Reps Time

baseline
Neutral with no movements for

collecting pure noise
1 2 secs

syllable1 “afa afa afa ifi ifi ifi ufu ufu ufu”[11] 1 6 secs
/a/ normal /a/ as in honest 55 2 secs
/u/ normal /u/ as in you 55 2 secs
/i/ normal /i/ as in feel 55 2 secs

sentence1
“The dew shimmered over my shiny

blue shell again”[11]
55 4 secs

sentence2
“Only we feel you do fail in new fallen

dew”[11]
55 4 secs

syllable2 “afa afa afa ifi ifi ifi ufu ufu ufu”[11] 1 6 secs
/a/ pressed /a/ with a breath hold 55 2 secs
throat clear Single throat clear 55 1.5 secs
/u/ pressed /u/ with breath hold 55 2 secs

cough Single cough 55 1.5 secs
/i/ pressed /i/ with breath hold 55 2 secs
syllable3 “afa afa afa ifi ifi ifi ufu ufu ufu”[11] 1 6 secs

MVC Maximum voluntary contraction 3 8 secs
50% MVC Submaximal voluntary contraction 3 15 secs

D. Classification

In this study, we expended the feature vector used in our
previous work [10]. We are now using: GUSSS ratio (GR)
[12], Mean Absolute Value (MAV), Zero Crossings (ZC),
Slope Sign Changes (SSC), Waveform Length (WL) [13],
Willision Amplitude (WA) [14], Root Mean Square (RMS)
[15] and Auto Regressive (AR) [16] as the feature vectors for
classification. Finally, a Linear Discriminant Analysis (LDA)
classifier was chosen because: 1) it does not require iterative
training; and 2) it avoids potential under- or over-training
[17].

IV. EXPERIMENTS AND RESULTS

Two experiments were performed: Exp-1, where all test
subjects were asked to produce normal and simulated pressed
vowels (/a/, /u/, /i/ in Table I); and Exp-2, where the test
subjects were separated into two groups based on their VFI
scores (vocally healthy and vocally fatigued groups). In
Exp-1, the data were labeled Negative and Positive for the
presence of simulated pressed vowels (simulated fatigue);
while for Exp-2, the same labels Negative and Positive
represented the actual presence of fatigue. In Exp-2, only the
normal vowels were used – the number of repetitions for each
gesture (vowel) is shown in the third column of Table I. All
experiments were performed using ten-fold cross-validation:
i.e. the average of ten runs using 90% of the data for training
and 10% for testing.

A. Exp-1: Normal Vowels vs. Simulated Pressed Vowels

The goal of this experiment was to classify simulated
pressed vowels as an indicator of vocal fatigue. So, two
tests were performed: intra-subject and inter-subject. For the
intra-subject test, due to performance errors, the number of
samples in each class varied from 108-165 for Positive and



Table II
CONFUSION MATRIX FOR POSITIVE/NEGATIVE DETECTION OF

SIMULATED PRESSED VOWELS USING 37 TEST SUBJECTS UNDER
INTRA-SUBJECT APPROACH

Actual Positive Actual Negative
Predicted Positive 94.6% 3.3%
Predicted Negative 5.4% 96.7%

Accuracy 95.83%

Table III
CONFUSION MATRIX FOR POSITIVE/NEGATIVE DETECTION OF

SIMULATED PRESSED VOWELS USING 37 TEST SUBJECTS UNDER
INTER-SUBJECT APPROACH

Actual Positive Actual Negative
Predicted Positive 62.9% 27.1%
Predicted Negative 37.1% 72.9%

Accuracy 68%

55-165 for Negative detection of simulated pressed vowels.
The results are shown in Table II.

For the inter-subject test, the total numbers of voice
samples in each class were: 6,033 and 5,854 in the Positive
and Negative classes, respectively. As the result in Table
III shows, the overall accuracy dropped compared to the
intra-subject test. This drop can be explained by the fact
that among all test subjects, some individuals were actually
considered to have vocal fatigue according to their VFI score
on factor 1 [3]. Thus, it is reasonable to assume that the
classifier could not separate the normal voice from subjects
with vocal fatigue and the simulated pressed voice from
vocally healthy subjects, which led to the next experiment.

B. Exp-2: Vocally Healthy vs. Vocally Fatigued Subjects

As indicated earlier, VFI scores on factor 1 were used
as the indicator of vocal fatigue. Also, the results in [3]
determined that the mean (standard deviation) of VFI scores
are 24.47 (9.76) for patients with voice disorders and 5.16
(4.58) otherwise. So, for this study, we set the value VFI >
15 (≈ 24.47 − 9.76), as the boundary for Vocally Fatigued
subjects. Similarly, a value VFI 6 10 (≈ 5.16 + 4.58) was
set for Vocally Healthy subjects. Lastly, subjects whose VFI
fell between the two boundaries were put in the Intermediate
group. The goal was to classify Vocally Healthy (Negative)
and Vocally Fatigued (Positive) subjects. Accordingly, the
number of subjects in the Vocally Fatigued group was 4,
while the number of Vocally Healthy was 31. Therefore, the
total number of samples (vowel gestures) labeled Positive
was 657 and the number of samples labeled Negative was
5,046.

The result for this classification is shown in Table IV.
The overall classification accuracy was 93.9%, which is
much higher than the accuracy achieved in Exp-1-inter-
subject. Also, unlike in Exp-1-inter-subject, the error now
is less evenly distributed: i.e. 37.1% and 27.1% in Table
III versus 41.9% and 1.4% in Table IV. However, both the
high accuracy and the uneven error could be indicative of the

Table IV
CONFUSION MATRIX FOR POSITIVE/NEGATIVE DETECTION OF VOCALLY

FATIGUED SUBJECTS AMONG 35 TEST SUBJECTS

Actual Positive Actual Negative
Predicted Positive 58.1% 1.4%
Predicted Negative 41.9% 98.6%

Accuracy 93.9%
Sensitivity 0.581
Specificity 0.986

Figure 2. The sensitivity/specificity of the classification results in relation to
the VFI factor 1 score threshold for splitting between positive and negative
classes. The red bars indicate the number of subjects that belong to positive
class and blue corresponds to negative class.

heavy bias in the dataset towards Vocally Healthy subjects:
i.e. the classifier had only 657 samples to learn from vocally
fatigued subjects out of 5,703 total samples. So, to better
understand this result, it is worth pointing out the sensitivity
(a.k.a. true positive rate) in Table IV: 0.58.

Another explanation for the low sensitivity could be in
the labeling. Perhaps, the boundaries set for vocally healthy
and vocally fatigued are not appropriate and subjects labeled
fatigued may not be so (and vice-versa). Also, by changing
these boundaries, the intermediate group – subjects that
could not be assigned to either class – could provide more
information for the vocally fatigued group.

To further investigate the labeling step, we set a single
and variable VFI-on-factor-1 boundary to separate the vocally
healthy and vocally fatigued groups. This single VFI-on-
factor-1 boundary was shifted from a low limit of 5, to a
high limit of 24 in incremental steps. For each step, the
same classification was performed and the sensitivity was
calculated.

The results for this test are depicted in Figure 2, which
shows that, as the VFI boundary increases, fewer subjects are
assigned to the vocally fatigued group, while the sensitivity
in the classification of the vowel gestures also increases. Yet,
all specificity values remain around 90%. This shows that
as the VFI-on-factor-1 boundary increases, the vocal fatigue
pattern becomes more distinguishable, resulting in a higher
sensitivity.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented our ongoing research on vocal
fatigue detection. While not all outcomes are ideal, the
result of 95.8% in Exp-1 indicates that the current protocol
for selection of subjects, training the subjects on simulated



pressed vocal gestures, feature select, and type of classifier
were quite appropriate. Also, despite the small number of
test subjects with vocal fatigue as indicated by their VFI
scores, the use of a variable VFI boundary can be very useful
in the future to better understand the dataset and, in the
process, the actual labels of those same test subjects. Another
interesting approach would be to automatically discover the
best boundary given a set of subjects – as for example, by
clustering the dataset into the two desired classes.

However, future experiments will require many more test
subjects, which we are already in the process of obtaining.
Once that is done, we can focus on the generalization ability
of our method so as to classify hitherto unknown subjects.
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