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Abstract—Classification and segmentation using ultra-fine-
grained datasets can be challenging due to the small nuances
between adjacent classes. This problem can be exacerbated by
the fact that variations within classes can be much larger than
other variations between classes. Some approaches have resorted
to attention mechanisms that focus on the source or the properties
of the features that cause these minor changes in samples between
or within classes. In some cases, the attention mechanism can be
derived from spatial, temporal, modal, or other types of features
in the dataset. Sometimes, attention can be drawn from external
sources such as the shape of the object, its skeleton, contour, etc.
Finally, some approaches use completely independently extracted
information to guide the attention mechanism in a supervised
fashion (privileged information, guided-attention, etc). In this
paper, we claim that in the context of ultra-fine datasets with
a small number of samples, a simple attention mechanism can
improve the classification results. Moreover, the same simple
attention mechanism can be employed in a backbone topology for
the segmentation of the same information that would otherwise be
used to guide the attention mechanism in other methods. In other
words, unlike the state-of-the-art model for ultra-fine-grained
classification of, for example, plant leaves datasets, which uses
segmentation masks to guide its attention mechanism, our pro-
posed network can simultaneously provide a classification label
and a segmentation mask. The XGBoost algorithm was applied
to the attention-modulated feature map for classification, and
the Optuna hyperparameter optimization framework was used
to tune XGBoost. Three state-of-the-art methods were compared
against ours using three benchmark datasets, and our model,
XMNet, achieved the best results for the vein segmentation task.
For the classification part, our network achieved comparable
performance with respect to two state-of-the-art as well as various
other more traditional methods.

Index Terms—ultra-fine-grained visual categorization, neural
network, semantic segmentation, attention, multitasking, and
gradient boosting.

I. INTRODUCTION

Deep learning models, which are deep convolutional neural
networks (CNNs) and transformers based models, achieved
comparable performance to humans on different large-scale
image classification datasets [8], [36]. These CNNs and
transformers combine low, mid, and high-level features with
classifiers. The variety of feature levels is enhanced by the
number of layers, or the depth, of the network [14]. Many
studies have shown that the depth of the network is significant
for its performance [15], [17], [26], [28]. That allowed CNNs
and transformers to be the state-of-the-art models for object
recognition [8]. However, these models need large datasets
to be able to extract representations that model the differences
between classes. Deep learning models are required to produce
close representations for instances belonging to the same class,
ensuring a high degree of similarity in intra-class represen-
tations. Conversely, for instances that are categorized under
different labels, these models should generate representations
that are distinctly separated. Unfortunately, for small datasets,
these models usually memorize the images, leading to an
overfitting problem.

Despite their superior performance on different benchmarks,
these models do not perform as well on fine-grained and
ultra-fine-grained visual classification datasets [21] [2] [22]
[38]. Especially for the ultra-fine-grained datasets, that is due
to the existence of many classes; each has a small number
of instances, and arguably, there are no visual appearance
differences between some of the classes, especially in the
ultra-fine-grained datasets. Figure 1, contains different classes
of the SoyCultivarVein, BtfPIS, and HainanLeaf datasets,
respectively. As shown in Figure 1, each dataset has several
different cultivars with minimal, if any, visual differences. For



example, the first row of Figure 1 has three different categories
of soy leaves. The visual distinctions are so subtle that they
may even challenge human experts.

Contrary to traditional classification tasks that typically
focus on identifying objects from distinct species, such as
cats, dogs, aircraft, and cars, the classification methods for
fine-grained visual categorization need to be able to find the
small differences between the categories in each dataset, such
as the BtfPIS dataset. For this type of task, the categories are
within the same species. However, they are less challenging to
differentiate between than categories in the ultra-fine-grained
datasets. For ultra-fine-grained visual categorization, it is a
harder task because there are small visual inter-class variances
[21], such as the SoyCultivarVein and HainanLeaf datasets.

A number of methods have been developed to address this
problem. These techniques involve either adding an additional
supervisory signal or an external discriminative input. One
technique uses multiple networks to divide the classification
task into two parts. The first part is to locate discriminative re-
gions in images. Secondly, it uses these discriminative regions
with the input image to classify [18]. Another technique used
the segmentation mask, not only as a discriminative region
but to guide the network to pay more attention to the regions
highlighted by this mask [33].

Leaf vein segmentation in ultra-fine-grained datasets like
SoyCultivarVein and HainanLeaf is crucial, as vein character-
istics such as vein density significantly influence plant pro-
ductivity and physiological processes [4], [9]. This is particu-
larly relevant for understanding traits like drought tolerance
by finding the correlation between vein characteristics and
genetic factors. Genetic factors are hypothesized to control
vein characteristic variations within species [10], making it
important for the identification of superior genotypes. Effective
leaf vein segmentation is essential for quantifying variations
within cultivars, aiding in the development of crop varieties
with improved yield and stress resilience.

In this paper, a network is developed that does not take
either discriminative parts or additional supervisory signals.
The classification module of the network is trained solely with
the actual classification labels, without the use of segmen-
tation masks to guide its attention mechanism. However, it
provides both a classification label and a segmentation mask.
It is tested on three benchmarks; one is fine-grained, and
the other two are ultra-fine-grained datasets. This network
gives better mean intersection over union and classification
accuracy than some of the state-of-the-art networks. To the
best of our knowledge, this is the first model to provide
classification labels and segmentation masks for Ultra-Fine
Grained Datasets simultaneously. Our model has three main
modules, an encoder-decoder module, an attention module,
and a classifier with a hyperparameters tuning algorithm, as
shown in Figure 2. In Figure 2, the green circle represents
the same above attention mechanism. We have made the code
available in the dedicated GitHub repository associated with
this paper https://github.com/rmf3mc/xmnet.

Fig. 1: Samples from SoyCultivarVein, HainanLeaf (HL), and
BtfPIS datasets. Each row represents one of these datasets
respectively, and each column represents a different class

II. METHOD

Our proposed method comprises three modules: an encoder
and a decoder module for feature extraction and image seg-
mentation, an attention module to enhance relevant features
and suppress irrelevant ones, and lastly, the Optuna framework
for hyperparameter optimization of XGBoost for classification.

A. Enoder-Decoder

Many studies have demonstrated the effectiveness of using
pre-trained models for downstream tasks [5], [19]. In our
experiments, we explored a variety of pre-trained models,
including DenseNet [17], ResNet [14], and MobileNet [15].
For our final model, we choose to employ a pre-trained
DenseNet161 model as a backbone for extracting the final
feature map for classification F4 and, in addition, the multi-
scale feature maps from different layers of the backbone F0−4

for the decoder’s input. Each feature map captures different
levels of detail, with deeper layers typically representing more
abstract or global features and shallower layers capturing more
detailed spatial information. Such that the F0 feature map has
the full scale and F4 has the one-sixteenth of the full scale.

For the decoder, we employed a simple U-Net decoder
[23]. Its main operation includes enlarging the feature map
through a twofold upsampling layer, which utilizes bilinear
interpolation. This interpolation method calculates a weighted
average based on the closest 2 × 2 neighborhood of known
pixel values around the unknown pixel. Finally, the feature
map at the top layer of the decoder undergoes convolution with
a 1 × 1 convolutional layer. This step maps each component
of the feature vector in the final feature map to a single value
to construct the final pixel value in the segmentation mask.

B. Attention

The spatial attention module in XMNet is identical to those
used in [33], [21], and [35]. However, in contrast to [33] and
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Fig. 2: Schematic diagram of the XMNet modules

[27], our attention module is not guided using a segmentation
mask. In other words, the classification part of our model is
trained without any additional supervisory signals. It is only
trained using the classification labels in an end-to-end manner.
The attention module processes the backbone’s feature maps
to produce a corresponding weight map. This weight map is
then applied in a spatially specific manner to the feature maps.
As a result, the network can more effectively concentrate on
the most pertinent spatial regions within the feature map,
enhancing the model’s performance [27].

The backbone of our model produces five feature maps,
denoted as F0−4. Each of these feature maps is input into
the attention module. Let’s represent the k-th feature map as
Fk ⊆ RHk×Wk×Ck , where Hk, Wk, and Ck correspond to the
height, width, and number of channels of Fk, respectively. To
process each Fk, we apply mean and maximum operations.
These operations compute the mean attention mask Ameank

and the maximum attention mask Amaxk of Fk, they are
calculated as the following:

Ameani,j
k =

1

C

C∑
c=1

F i,j
k (c), (1)

Amaxi,j
k = F i,j

k (argmax
c

F i,j
k (c)), (2)

where i, j are the coordinates in the attention map, and c is
the cth channel of the image feature maps.

These masks will have spatial regions that are more infor-
mative and discriminative for the model to classify the given
input. These masks are then used for computation of the final
attention mask Afinalk , as shown in the following:

Afinalk = σ(f1×1(Ameank, Amaxk)) (3)

Where f1×1 is a 1x1 convolution, and σ is a sigmoid function
applied to the output of the 1x1 convolution. The 1x1 con-
volution is used to weigh the mean and maximum attention

masks according to their importance to the final prediction.
Each channel of the attended feature map Fattk(c), is then
calculated by element-wise multiplication of the same channel
of the feature map Fk(c) and the final attention mask Afinalk .

Fattk(c) = Fk(c) ∗Afinalk , (4)

Finally, the final attention-modulated feature map Ffinalk of the
feature map Fk is then the product of weighted element-wise
addition of the attended feature map Fattk and the feature map
Fk, as shown in the following.

Ffinalk = λFk + µFattk , (5)

The weights λ and µ are hyper-parameters to weigh feature
map Fk and final attended feature map Fattk according to their
contribution [12], in this paper both set to 1

2 [33].

C. XGBoost with Optuna

Often, enhancements in state-of-the-art image classification
benchmarks are achieved not just through new methods, but
also through refined configurations of existing models [30].
For example, EfficientNet is developed by finding the bal-
ance between network depth, width, and resolution [29]. By
optimizing those hyper-parameters, EfficientNet outperformed
ResNet, DenseNet and MobileNet [29].

Recent approaches have increasingly integrated various ma-
chine learning methods with deep neural networks, capitalizing
on the superior ability of these techniques to handle high-
dimensional data [11], [24], [31]. One of the most popular
machine learning methods is the gradient tree boosting [20].
It has been used in many standard classification benchmarks,
and it has become state-of-the-art in many of them. XGBoost is
a scalable machine learning system for tree boosting, which is
a gradient tree boosting algorithm with several enhancements
in terms of computational speed, performance, and usability.
Moreover, XGBoost has won challenges by combining it
with neural nets [6]. At every iteration, XGBoost gradually



improves compared to the previous iteration. Thus, in this
paper, we used the XGBoost algorithm atop deep learning
models’s features.

XGBoost requires careful tuning of several hyperparameters
to achieve optimal performance. These parameters include the
type of booster, step size shrinkage to prevent overfitting,
minimum loss reduction for further partitioning on a leaf
node of the tree, and the L2 regularization term on weights.
Therefore, hyper-parameter optimization should be considered
an essential external loop in the learning process [3].

In our approach, we employed Optuna, a hyperparameter
optimization framework [1], utilizing a tree-structured Parzen
estimator approach sampler [3] to search for the optimum
parameters for XGBoost. During the training process, we con-
tinuously input the training loss from each epoch of XGBoost’s
objective funtion into Optuna. In the context of the objective
function for XGBoost, we define several terms. The simplified
objective function at step t, denoted as L(t), is given by

L(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft), (6)

where gi and hi are the first and second order gradient
statistics on the loss function for the ith instance. These
gradients are calculated as follows:

gi =
∂

∂ŷ(t−1)
l(yi, ŷ

(t−1)), (7)

hi =
∂2

∂(ŷ(t−1))2
l(yi, ŷ

(t−1)). (8)

Here, ft(xi) represents the prediction of the tth tree for the
ith sample. The regularization term Ω(ft), which is added to
prevent overfitting by penalizing the complexity of the model,
is expanded as

Ω(ft) = γT +
1

2
λ

T∑
j=1

w2
j , (9)

where γ is a parameter that controls the complexity of the
model with respect to the number of leaves T , λ is the L2
regularization term, and wj are the leaf weights of the tth tree.
This method facilitates a more efficient and broadly applicable
tuning of the model’s parameters, enhancing both performance
and generalizability.

III. RESULTS

A. Datasets

All three datasets have both image- and pixel-level labels.
SoyCultivarVein Dataset. The SoyCultivarVein dataset [37]
is a publicly available collection of leaf images encompassing
two hundred different cultivars, each with six individual sam-
ples. This amounts to a total of 1200 images in the dataset.
All these categories are derived from the same species, which
makes the dataset particularly challenging due to the consid-
erable resemblance among the categories. For the purpose of

Fig. 3: iVAT algorithm on the Attended features of
DenseNet161 model. The top row is the output of iVAT given
the training and testing attended features of SoyCultivarVein,
and the second row of HainanLeaf

classification tasks, the dataset is divided into a training set
and a test set, following a 2:1 distribution ratio.

HainanLeaf Dataset. The HainanLeaf [39], comprises one
hundred images distributed over twenty distinct categories.
Each category is represented by five individual samples. Sim-
ilar to the SoyCultivarVein dataset, this dataset is also divided
into a training set and a test set with a ratio of 3:2, respectively.

BtfPIS dataset. The Butterfly Patchy Image Structure
Dataset [32], commonly known as the BtfPIS dataset, encom-
passes a collection of five hundred images, evenly distributed
across ten categories, with each category containing fifty im-
ages. One-fifth of the total images are designated for training
the model, while the remaining four-fifths of the images are
set aside for testing purposes.

B. Classification Results

In Figure 3, we used the improved Visual Assessment
of Cluster Tendency (iVAT) Algorithm to test the clustering
tendency of the training and testing sets of SCV and HL [13].
As shown in Figure3, the model classifies the SCV dataset
by identifying clusters with similar features. This suggests
a potential lack of visual distinction between classes within
these clusters. Conversely, with the HL dataset, the model
demonstrates better generalization, successfully distinguishing
the features representative of each class.

As mentioned earlier, our model incorporated the XGBoost
algorithm with a deep-learning model and Optuna. In this
paper, we experimented with different pre-trained models used
as a backbone before choosing the best-suited one for the
ultra-fine-grained datasets. These models are DenseNet161,



Method Technique

Hand-crafted Features
MDM [16] 13.4
DBCSR [7] 14.1
MORT [39] 28.5

Backbone Architecture
MGA Orig.

CNN

DenseNet161 35.5 33.0
DenseNet121 33.5 30.0
Resnet50 29.25 31.25
Resnet34 26.5 25.25
Resnet18 27.0 25.75
MobilenetV2 28.25 29.25
MobilenetV3 31.0 28.25

GB DenseNet161 6.25
AdaBoost DenseNet161 1.50
RF DenseNet161 27.25
XGBoost DenseNet161 26.0
PAC DenseNet161 33.75
SVM DenseNet161 24.55
KNN DenseNet161 26.33
Ours DenseNet161 34.75

TABLE I: The accuracy in % of the experimented methods on
the test sets of SoyCultivarVein (SCV) dataset

Dataset Backbone Architecture
XMNet MGA Orig.

SCV DenseNet161 34.75 35.5 33.0
HL DenseNet161 75.0 77.5 77.5
BtfPIS DenseNet161 89.25 87.0 86.75

TABLE II: The accuracy in % of the experimented CNN based
models on the test sets of SoyCultivarVein (SCV), HainanLeaf
(HL), and BtfPIS datasets

DenseNet121, Resnet50, Resnet34, Resnet18, MobileNetV2,
and MobileNetV3.

We compared our model with a number of other methods,
including convolution neural network based models, hand
crafted features, and other machine learning methods atop
Convolution Neural Network models. The hand crafted based
methods are reported from [33]. The convolution neural net-
work based models are Mask Guided Attention (MGA) and
its corresponding original models [33]. And the hand crafted
features are deformation based curved shape representation
(DBCSR) [7], multiscale distance matrix for fast plant leaf
recognition (MDM) [16] and patchy image structure classifi-
cation using multi-orientation region transform (MORT) [39].
The other machine learning methods are gradient boosted
decision trees (GBDT) [20], Adaboost [25], random forest
(RF), XGBoost [6], passive aggressive classifier (PAC), sup-
port vector machine (SVM) and k-nearest neighbor (KNN).

In TABLE I, we reported the accuracy (%) of all the
methods we tested on the SoyCultivarVein (SCV) test dataset.
While, In TABLE II, we reported the accuracy (%) of all
the Convolution Neural Network based models we tested on
the three datasets. As shown in both tables, our approach
outperforms both machine learning, hand crafted features
based methods and gives similar results to the Convolution
Neural Network state-of-the-art based models.

SCV HainanLeaf
HMSANet 52.53 41.31
Unet3+ 50.56 4.13
InternImage 62.86 52.65
Ours 65.96 59.94

TABLE III: The semantic segmentation results (mIoU) on
the test sets of SoyCultivarVein (SCV), HainanLeaf (HL) and
BtfPIS datasets.

C. Segmentation Results

After training the model on classification, we halted updat-
ing the model backbone’s parameters and attached and trained
a decoder to segment the given input images. We tested a
Unet3+ decoder with the bare features from the backbone and
another Unet decoder with the attended features, as shown in
Figure 2. The mean intersection over Union (mIoU) results
are reported in Table III. We reported the HMSANet results
from [33] for additional comparison. Moreover, we trained
and evaluated the IntermImage model on the three datasets
[34]. As shown in Table III, our model outperforms the other
models on the ultra-fine-grained datasets.

IV. CONCLUSIONS

In conclusion, in this paper, we developed a new method
to, namely XMNet, that provide a dual output of classification
labels and segmentation masks without relying on auxil-
iary supervision signals. XMNet simplifies the computation
process. As samples for ultra-fine-grained are expensive to
acquire, thus our design focused on using simple operations
to prevent overfitting as much as possible. The model shows
its ability to discern minute appearance variances among
different categories that are extremely hard to be noticed by
experts if these variabilities exist and handle the intrinsic
variability within the same category—tasks. We utilized the
XGBoost algorithm atop the final feature that was refined
using an attention heatmap. The incorporation of Optuna for
hyperparameter optimization of XGBoost further refined the
learning process, ensuring that the model’s parameters are
finely tuned to the dataset at hand. The empirical evaluation
of XMNet across benchmark datasets—the ultra-fine-grained
SoyCultivarVein and HainanLeaf demonstrates its robustness
in vein segmentation, which is a critical factor in leaf morphol-
ogy and genetic studies. Even with a frozen encoder post the
classification training, XMNet outperforms contemporary deep
learning models in ultra-fine-grained datasets. For classifica-
tion, XMNet’s performance is on par with that of state-of-the-
art convolution-based neural networks. Notably, it surpasses
methods that rely on hand-crafted features, highlighting the
effectiveness of deep learning approaches.
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