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Optimization of the Simultaneous Localization
and Map-Building Algorithm for Real-Time
Implementation

José E. Guivant and Eduardo Mario Nel®&nior Member, IEEE

Abstract—This paper addresses real-time implementation of the proximation of the probability density functions with samples,
simultaneous localization and map-building (SLAM) algorithm. It a|so called particles. This idea was originally introduced in [11]
presents optimal algorithms that consider the special form of the as a bootstrap filter but has been more commonly known as the

matrices and a new compressed filter that can significantly reduce ticle filter. In thi i ds to b d
the computation requirements when working in local areas or with particie hiter. In this case, no assumption needs to be made on

high frequency external sensors. It is shown that by extending the the particular model and sensor distributions. The algorithm is
standard Kalman filter models the information gained in a local suitable for handling multimodal distribution. This makes pos-
area can be maintained with a cost~ O(INZ), where N, is the  sible to start the robot in a completely unknown position. At the
number of landmarks in the local area, and then transferred to the same time it allows for the solution of the “kidnapped robot”

overall map in only one iteration at full SLAM computational cost.
Additional simplifications are also presented that are very close to problem, a robot that has been suddenly moved to another po-

optimal when an appropriate map representation is used. Finally Sition without being told. This approach has been applied very
the algorithms are validated with experimental results obtained successfully to a number of indoor navigation applications, in

with a standard vehicle running in a completely unstructured out- particular in [12]. Due to the high computation requirements

door environment. this method has not been used for real-time SLAM at present,
Index Terms—Autonomous vehicles, Kalman filter, map although work is in progress to overcome this limitation.
building, navigation. One of the most appealing approaches to solving the real-time

localization problem is by modeling the environment and sen-
sors and assuming that errors have a Gaussian distribution. Then
very efficient algorithms, such as Kalman filters, can be used
R ELIABLE localization is an essential component of anys sojve this problem in a compact and elegant manner [13].
autonomous vehicle system. The basic navigation loopf$ese algorithms require the mobile robot to always be localized
based on dead reckoning sensors that predict high-frequeggin certain bounds, meaning that it is not possible to address
vehicle manoeuvres and low-frequency absolute sensors iyl initialization or the “kidnapped robot” problem. This is not
bound positioning errors [1]. The problem of localization givegy, jssye for many industrial applications, [14]-[16], where large
a map of the environment or estimating the map knowing thgachines weighing many tonnes operate autonomously. In fact,
vehicle position has been addressed and solved using a nuUmMR{hese applications the navigation system has to be designed
of different approaches [2]-[5]. A related problem is when botith enough integrity in order to avoid, or at least recognize
the map and the vehicle position are not known. In this case, \&rch faults and provide for appropriate safety procedures, [1].
hicle and map estimates are highly correlated and cannot be pBr these applications the Kalman filter with Gaussian assump-
tained independently of one another [6]. This problem is usuains is the preferred approach to achieve the degree of integrity
known as simultaneous localization and map building (SLAM)equired in such environments.
and was originally introduced in [7], [8]. During the past three kaiman filter methods can also be extended to perform
years, significant progress has been made toward the solut§iiam. There have been several applications of this technology
of the SLAM problem. A number of different approaches havg, 3 number of different environments, such as indoors [17],
been presented to address this problem. In [9] and [10] aprolPPeL underwater [19], [20], and outdoors [21], [22]. One of
bilistic approach is presented to solve the localization problejge main problems with the SLAM algorithm has been the
or the map-building problem when the map or position of the vepmputational requirements. It is well known that the com-
hicle, respectively, is known. This approach is based on the Hexity of the SLAM algorithm can be reduced to O(N?)
[8], N being the number of landmarks in the map. For long
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map. This correlation is of fundamental importance for the 4
long-term convergence of the algorithm [6], and needs to be
maintained for the full duration of the mission. Leonatdal.

[19], addressed the computational issues by splitting the global
map into a number of submaps, each with their own vehicle
track. They present an approximation technique to address
the update of the covariance in the transition between maps.
Although they present impressive experimental results there is
no proof of the consistency of the approach or estimation of the
conservatism of the covariance over-bounding strategy.

This paper addresses real-time implementation of SLAM
with a set of optimal algorithms that significantly reduce the
computational requirement without introducing any penalties
in the accuracy of the results. A compressed algorithm is x;
presented to store and maintain all the information gathered
in a local area with a cost proportional to the square of thgy. 1. Vehicle coordinate system.
number of landmarks in the area. This information can then
be transferred to the rest of the global map with a cost that isConsidering that the vehicle is controlled through a de-
similar to full SLAM but in only one iteration. These resultsnanded velocity,, and steering angle the process model that

are demonstrated theoretically and with experimental resul§gedicts the trajectory of the center of the back axle is given by
Finally, suboptimal simplifications are presented to update the

42

covariance matrix of the states. With this approach the total jfc Ve 'C_OS(¢)
computational cost of the algorithm can be made proportional Yo f = | Ve -sin(@) |+ 1)
to V. Itis also shown that by using a relative map representation Pe % - tan()

the algorithm become very close to optimal. The convergenggerer is the distance between wheel axles anid noise as
and accuracy of the algorithms are tested in large outdq@kfined in (53). The observation equation relating the vehicle

environments with more than 500 states. states to the observations is

The paper is organized as follows. Section Il presents the ;
basic modeling background required to introduce the algo- 2z =h(X,z; ;) = {Z;}
rithms. Section Ill presents the optimization of SLAM in the 3
prediction and update stages. In particular the compression al- Vi —20)? + (yi —yr)?
gorithm is presented with further details given in the Appendix. = atan(@f—y“) — L+ T @)
Section IV introduces the SLAM simplification and proofs of (wi=er) 2
the consistency of the algorithm. It also presents the relativédere
map representation used to make the algorithm proposed very observation vector;
close to optimal. Experimental results in unstructured outdoor(x;, ;) coordinates of the landmarks;
environments are presented in Section V. Finally Section Vlzr,yr and¢r  vehicle states defined at the external sensor
presents the conclusions with proposed future research areas. location; and

Yh noise as defined in (53).

In the case where multiple observation are obtained the ob-
servation vector will have the form

Il. SLAM 4
Z=1:1. ©)

m
z

When absolute position information is not available it is still
possible to navigate with small errors for long periods of time.
The SLAM algorithm use dead reckoning and relative obser- The extended Kalman filter (EKF) equations to solve this es-
vation to estimate the position of the vehicle and to build artanation problem are presented in Appendix A. In this section,
maintain a navigation map. The mobile robot is equipped withe present the extension of the models to address the SLAM
dead reckoning capabilities and an external sensor capableafblem.
measuring relative distance of the vehicle to the environmentUnder this framework the vehicle starts at an unknown po-
as shown in Fig. 1. The steering contrel and the speed. sition with given uncertainty and obtains measurements of the
are used with the kinematic model to predict the position of tlEvironment relative to its location. This information is used to
vehicle. In this case, the external sensor returns the range amaementally build and maintain a navigation map and to lo-
bearing information to the different featurék;—, ). This calize the vehicle with respect to this map. The system will de-
information is obtained with respect to the vehicle coordinatésct new features at the beginning of the mission and when the
(z1,4), thatisz(k) = (r, 3), wherer is the distance from the vehicle explores new areas. Once these features become reliable
beacon to the range sensor ghid the sensor bearing measure@nd stable they are incorporated into the map becoming part of
with respect to the vehicle coordinate frame. the state vector.
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The state vector is now given by landmarks, that i2 N + 3 = M. This is valid when working
. with point landmarks in 2-D environments. In most SLAM ap-
X = [AL} plications the number of vehicle states will be insignificant with
Xi respect to the number of landmarks. The number of landmarks
X =(zp,ur,00)" € R® will grow with the area of operation making the standard filter
X; =(z1.91. -, an.yn)* € RN (4) computation impracticable for on-line applications.

In this paper, we present a series of optimizations in the
where(x, y, ¢), and(x, y); are the states of the vehicle and feaprediction and update stages that reduce the complexity of
tures incorporated into the map, respectively. Since this envirdhe SLAM algorithm from~ O(M?3) to ~ O(M?). Then a
ment is considered to be static, the dynamic model that includesmpressed filter is presented to reduce the real-time computa-

the new states becomes tion requirement to~ O(2N?2), with N, being the number of
landmarks detected in the local area. This will also make the
Xp(k+1) =f(Xp(k)) +~ SLAM algorithm extremely efficient while the vehicle remains
Xi(k+1) =X;(k). (5) navigating in this area since the computation complexity

becomes independent of the size of the global map. These
It is important to remark that the landmarks are assumeddfyorithms do not make any approximations and the results are
be static. If this is so, then the Jacobian matrix for the extendgéntical to a full SLAM implementation.
system is
A. Standard Algorithm Optimization

1) Prediction Stage:Considering the zeros in the Jacobian
matrix of (6) the prediction (55) can be written

(6) J'P'JT_FQ:[JI @}_[Pn Pm}

oOF [H 21 14 o
ax — ot 1] |@" I

Jl €R3X3, e ‘R3><N7 = RQNXQN.

. . gt T Py P
The observations, and z; are obtained from a range and JT T O @
bearing sensor relative to the vehicle position and orientation. . [ @1 IT} + [ Q‘ - }
The observation equation given in (2) is a function of the states 3 axan z NN
of the vehicle and the states representing the position of the land- JLeRT, JeR , TeR ;
mark. The Jacobian matrix of the vectowith respect to the Py €R¥3) Py € RPN
variables(zr,, yr, ¢r, z;, ¥;) can be evaluated using: Py =PL, Py € RENX2N 9)
z Ir; . . . .. .
oh _ g)? _ | 9Gryr.er {ziyitizi ~) @ Performing the matrix operations explicitly the following re-
ox |2 D 7y717¢7?‘jj7_7y7_}7_:1__w) ' sult is obtained:
This Jacobian will always have a large number of null ele- J. P = élT ?} . L]j“ 11312}
ments since only a few landmarks will be observed and validated L 2 i
at a given time. For example, when only one feature is observed _|N-Pu L 'P12:| _ |:J1 P N ~P12}
the Jacobian has the following form: | L Pn I Py Py P
o=, Jop.gto |l Pu S-Pe| (g0 o7
{ % } | Py Py > I
o N N N N _ Jo-Py-Jb P T
_|:TAT < 0 0 ... 1—; - 0 ... 0 | Po - Jt Py 1
- A Az A Az r
- X% -1 0 ... ¥ -3 0 ...0 _ Ju- Py JY Jy - Pry (10)
(8) | (J1-Pop)?t Py
where It can be proved that the evaluation of this matrix requires

approximately only 9 M multiplications. In general, more than
Az = (2 — ), Ay=(yr—u), A=+(Az)2+ (Ay)>. one prediction step is executed between two update steps. This
‘ . ‘ . is due to the fact that the prediction stage is usually driven by

These models can then be used with a standard EKE al hclgh frequency sensor information that acts as input to the dy-

. ) o T : mic model of the vehicle which needs to be evaluated in order
rithm to build and maintain a navigation map of the environme .
. . 0 control the vehicle. The low frequency external sensors report
and to track the position of the vehicle.

the observation used in the estimation stage of the EKF. This in-
formation is processed at a much lower frequency. For example,
the steering angle and wheel speed can be sampled every 20 ms,
Under the SLAM framework the size of the state vector isut the laser frames can be obtained with a sample time of 200
equal to the number of vehicle states plus twice the numberros. In this case we have a ratio of approximately 10 prediction

I1l. OPTIMIZATION OF SLAM
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steps to one update step. The compact form for two prediction
steps can be obtained using the results given in (10):

o
Pt+Ti+1ot) =J(t+11,1Ts)
CP(t+T1,t) - JN(E+ T, 1)
+Q(t + 11, 13)
=J(t+11,1y) - J(t,11) - P(t, 1) Fig. 2. Local and global areas.

T T
ST T+ T T In (15) P;; needs to be evaluated for every prediction step
+Q(+T1, 1) + (¢, 1h) since the quality of the estimated position is required all the
Q1) - JJY (). (11) time. P remains constant between updates. The calculation of
P, (or P») is evaluated only before the estimation procedure
By considering the special form of the matrix involved irusing (15).
SLAM the prediction equation can be rewritten 2) Update Stage:Since only a few features associated with
the state vector are observed at a given time, the matniqill
J(k+1)- (J(k) Pk k) - JT(k) + Q(k)) STk + 1) have a large number of zeros. When only one feature is incor-

[P” P+2} porated into the observation vector we have
— 11 12
= +2 +2
) Py Py . H:H(k):% = [Hy, D1, Hy, Do) € RPM
Pl—'Z—L = Jl(/i' + 1) . (Jl(k') . Pll(k', k‘) . Jl (/i') + Qll(k')) X=X(k)
~Ji(k —Ti— 1) H, :ai]} -3 oh c R2x3
PR = (P = (L(k+1) - Ju(k)) - Pra(h B) Llx=xay L,y d0) x—xa)
P =Py, (12) H, _on o € R**?
X, X=X (k) Nzwiyyi) X=X(k)
Finally, the prediction equation for two steps becomes @1,@ = null matrices <aa)’; o Vj# L) ' (18)
i
Pu(k+2k) G- Pk k) Ata give timek the Kal i i%V requires the eval-
Pk+2,k) = J ) 13 a give timek the Kalman gain matrixV requires the eva
( ) (Gr- Pk, k)T Poa(k, k) (13) uation of PHT
where P.H'=pP -H'+P,-Hf P, e RV*® P,ec RM*?
(19)
Gy =Ji(k+1)- Ji(k) It can be proved that the evaluation will require 10 M multi-
Pi(k+2,k)=Ji(k+1) plications. Using the previous result, the matfband W can
(o (k) - Py, k) - JE(E) + Qua (k) be evaluated with a cost of approximately 20 M
CIE(E 1), (14) S=H-P-H'+Re R*
W =P -HT.§71 e RMx2 (20)

From the previous considerations, in the case pfediction
steps without an update, the modified covariance matrix is The cost of the state update operation is proportional/to
The main computational requirement is in the evaluation of the
P11(/€+7’L/€+7’L) Gl'P12(/€/€) . . 5
! ! 15) covariance update where complexityNsO(M*=).
(G1- Pk BT Polh ) | 39 P P (M)

where B. Compressed Filter

P(k—l—n,k):[

n—1 In this section we demonstrate that it is not necessary to per-

G1 = Gi(k,n) = H Jik+4)=J(k+n—1)---J (k) formafull SLAM update when working in alocal area. Thisis a
=0 fundamental contribution because it reduces the computational

(16) requirement of the SLAM algorithm to the order of the number

For this vehicle model, the evaluation@f requiresn prod-  of features in the vicinity of the vehicle; independent of the size
ucts of matrices of dimensidhx 3. Considering that the major of the global map. A common scenario is to have a mobile robot
computational cost of the evaluation of this matrix is the calculgoving in an area and observing features within this area. This
tion of P15 (or P»1), this simplification can substantially reducesityation is shown in Fig. 2 where the vehicle is operating in a

the computation requirement in the prediction stagesHore-  |ocal area A. The rest of the map is part of the global area B.

diction steps the complexity will be approximatelyn +9M,  This approach will present significant advantages when the

that is smaller than the direct calculation. In this caes the yehicle navigates for long periods of time in a local area or

number of landmarks plus the number of vehicle states.  \hen the external information is available at high rate. Although
27-n+9.-M 1 high frequency external sensors are desirable to reduce position

o T Mo (17)  error growth, they also introduce a high computational cost in
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the SLAM algorithm. For example a laser sensor can return 2-DIn the previous demonstration the time subindexes were ne-
information at frequencies of 4-30 Hz. To incorporate this irglected for clarity of the presentation. These indexes are now
formation the full SLAM algorithm will require to updaté/ incorporated to present the recursive update equations. The co-
states at 30 Hz. In this work we show that, while working in gariance matrix after one update is

local area and observing local landmarks, we can preserve all

the information processing a SLAM algorithm of the order of Plk+1,k+1) =P(k+1,k) — dP(k +1,k)

the number of landmarks in the local area. When the vehicléw(k + 1,k + 1) =FPaq(k + 1, k) — Pao(k + 1, k)

departs from this area, the information acquired can be propa- k(k41) - Pao(k+1,k)

ggted to the glqbal Iandmarks.wnhout loss of mformayon. Thl%)ab(k FLEk4+1) =Pk +1k) —E(k+1) - PL(k 4+ 1,k)

will also allow incorporating high frequency external informa-

tion with very low computational costs. Another important im- =( =&k +1)) - Pa(k + 1K)
plication is that the global map will not be required to updaté”u(k + 1,k + 1) =Py (k + 1,k) — Po(k + 1, k)
sequentially at the same rate as the local map. ~k(k+1) Puy(k+1,k). (25)

1) Update Step:Consider the states divided in two groups. _ o _
And the covariance variation afteconsecutive updates
X:{XA} X4 € R?Na+3 X e R2N-3

XB XBERQNB N=Ns+ Np Pab(k+tvk+t):(I)(k+t_1)'Pab(kvk)
The states{ 4 can be initially selected as all the states repre- Puo(k 4tk 48) =Pk, ) = Pra(k, F)
senting landmarks in an area of a certain size surrounding the ve- Pk = 1) Par(k, k) (26)
hicle. The states representing the vehicle pose are also inclugigg
in X 4. Assume that for a period of time the observations ob-
tained are only related to the stat€g and do not involve states Slk+t)=(I—&k+1t) - (I—-E&k+t-1))
of Xp, that is (I = E(R))
k+t—1
h(X) = h(X4). (21) Pple+t—1)= Y (2T(i—1) k(i) - (i — 1))
Then at a given timé: =r 27)
g :% - __oh The evaluation of the matricds(k), (k) can be done recur-
OX|xoxey  9(Xa XB)|vova sively according to
Oh  Oh
x| = ol @ =gk e
(k) =p(k — 1) + T (k = 1) - s(k) - D(k — 1)
C_Zon5|der|ng the zeros of the matrikthe Kalman gain matrix with @(k), (&), s(k), £(k) € R2N**2Na _ (28)
W is evaluated as follows:
P p During long-term navigation missions, the number of states
P= {P‘w Pab} in X, will be, in general much smaller than the total number of
ba  TUb states in the global map, that§, < N, < M. The matrices
p.HT — {Paa : HE} &, andr;, are sparse and the calculationdefk) and«(k) has
Pro - HY complexity~ O(N2).
H.-P.-H'=H, P,,-H} It is noteworthy thatX,, P,;, P,, and P,, are not needed
S=H, P, -HY+R when the vehicle is navigating in a local region “looking” only

new region. The evaluation df;, Py, P, and P, can then be
done in one iteration with full SLAM computational cost using
the compressed expressions.

The estimate;, can be updated afterupdate steps using

} at the stateX,. It is only required when the vehicle enters a

. gT . ¢-1
W:P_HT_51:|:Paa Ha S :|:|:Wa

Py - HaT .51 W,
(23)

From these equations, the following is possible.
* The Jacobian matri¥/, has no dependence on the statesx, (k + ¢,k +t) =X, (k + t, k) — Pyo(k, k) - 0(k + 1)

Xg. ktt—1
* The innovation covariance matriand Kalman gaitV, with 8(k + 1) = Z ®T(i—1) - HX (1) - S7(0) - 9(d)
are functions of’,, andH,,. They do not have any depen- i=k
dencies onPy,, Py, P, and X,. (29)
The update termlP of the covariance matrix can then be _ L .
evaluated m the number of observations, in this case range and bearing,
- Py, -t Py 5 Py, - 9(/{}) €R2Na><m’ Z(/{;) c Rm’
AP =w.s - w't = (€ Pa)T  Pr-r- Puy with (k) e R2Nex2Na

I :HaT . S—l -H, andé’ =P, K (24) Ha(/%) GRmXQNa andS(k) c Rmxm
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Similarly, sinceH, is a sparse matrix, the evaluation cost
of the matrixé is proportional toH,. The derivation of these
equations is presented in Appendix B.

2) Mixed Update and Prediction Steps Sequencesnilar
results are obtained for sequences of interlaced prediction and
update steps:

Plk+1,k)=J(k+1,k) - P(k—1,k—1)
I E+LE)+Q

]_—Jaa Jab _ Jaa 0
T e ] T 0 I)
_[Jr 0] 5 [Qa] _[Qa

| e=[G]-[5]
ke,

o= (9]

Poo(k+1,k) =Jua(k + 1, k) - Pag(k, k)
I (k+ 1LE)+ Qg

Pay(k+ 1, k) =Joa(k + 1, k) - Puy(k, k) B, cR2Nx2No.

Pya(k +1,k) =(Pay(k 4+ 1,k))T
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Fig. 3. Map Administration for the compressed algorithm.

The cost of the complete covariance error matrix evaluation
(26) is approximatelyv, - NZ according to

Pab c RQJ\LX?]\T}, Pbb c RQJ\T},XQ]\T;,
)

dPy, =(Pyq -t - Pyy) ~ O(Ny - N2+ N2 . Ny)

Py (k+1,k) =Py (k, k). (30) dPay =(® - Pap) ~ O(NZ - N)

3) Extended Kalman Filter Formulation for the Compressed Vo, <Ny < V.

Filter: In order to maintain the information gathered in a local

(32)

area it is necessary to extend the EKF formulation presented jrf_rovided that the vehicle remains for a period of time in a
(55)~(56). The following equations must be added in the pr@lvén area, the computational saving will be considerable. This

diction and update stage of the filter to be able to propagate fs

important implications since in many applications it will

information to the global map once a full update is required: &/l0w the exact implementation of SLAM in very large areas.
This will be possible with the appropriate selection of local

O(k) = Ja(k k —1)- Bk — 1)

areas. The system evaluates the location of the vehicle and the

Prediction sted V(F) =¥k —1) landmark of the local map continuously at the cost of a local
(0) =1 SLAM. Although a full update is required when the vehicle
P(0) =1 leaves the region, this update can be implemented as a parallel

Update Step{ iik):: (I —¢(k)) - (k- 1)

task. The only states that need to be fully updated are the new

Y1 + QT (k= 1) - w(k) - ©(k — 1) states in the new local area. A selective update can then be done

(31) only to those states while the full update for the rest of the map

. . . runs as a background task with lower priority. These results are

When a fu,". update is re_quwed the global covarlance matrf?ﬁportant since it demonstrates that even in very large areas the
P and statex |s_updated with (26) and (2.9)’ respectively. computational limitation of SLAM can be overcame with the

4) Computational Cost.The computational cost for each,,,ression algorithm and appropriate selection of local areas.

“compressed” update is evaluated for the case where three

states are used to represent the pose of the vehicle and €"8ap Management

landmark is observed.
k=HY-S71.H,

It has been demonstrated that while the vehicle operates in a
local area all the information gathered can be maintained with

— 2X5 ~ 3
Ho=[H: 0], H.-€R } — koSt = (3 +2) a cost complexity proportional to the number of landmarks in

S e R2><2
0 = =
K= |:I€61 0:| , K11 € R>%®

§=Paa-n=[& 0], &RV
£cost~25-N,

B(k) = (I — £(k)) - B(k — 1)

d cost =~ 5

(k) =k — 1)+ ®T(k = 1) - (k) - &k — 1)
Ycost~5-N2+25-N,

this area. The next problem to address is the selection of local
areas. One convenient approach consists of dividing the global
map into rectangular regions with size at least equal to the range
of the external sensor.

The proposed method is presented in Fig. 3. When the ve-
hicle navigates in the regionthe compressed filter includes in
the groupX 4 the vehicle states and all the states related to land-
“N2+25-N, marks that belong to regionand its eight neighboring regions.
This implies that the local states belong to nine regions, each of
size of the range of the external sensor. The vehicle will be able
to navigate inside this region using the compressed filter. A full

Further details for more efficient implementation of this apdpdate will only be required when the vehicle leaves the central

proach are given in Appendix C. regionr.
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Every time the vehicle moves to a new region, the active stateWith this partition it is possible to generate conservative esti-
groupX 4 changes to those states that belong to the new regimates by updating the stat&s, but not updating the covariance
7 and its adjacent regions. The active group always includes tded cross-covariance matrices corresponding to this subvector.
vehicle states. In addition to the swapping of tkig states, a The covariance matrix can then be written in the following form:
global update is also required at full SLAM algorithm cost.

Each region has a list of landmarks that are known to be P= [PIT’P PPD} ,
within its boundaries. Each time a new landmark is detected the Pop Ppp
region that owns it appends an index of the landmark definition AP = |:APPP APPD:| —W.S.WT (35)
to the list of owned landmarks. It is not critical if the landmark APSp APpp

belongs to this region or a CIO.Ser adjacgqt region. In case OfConservative updates are obtained if the nominal update ma-
strong upd_ate_; where the estimated position of the Iandmaﬁ& AP is replaced by the suboptimalP*
changes significantly, the owners of those landmarks can also
be changed. AP — {APpp APPD} _AP— [@ %) }
Hysteresis region is included bounding the local area | APpp ) - & APpp|’
avoid multiple map switching when the vehicle navigates in . . %) %)
areas close to the boundaries between the regiand sur- P'=P-AP"=P-AP+ [@ APDD:|
rounding areas.
If the side lengths of the regions are smaller than the rangelt can be shown that the simplification proposed generates
of the external sensor, or if the hysteresis region is made tg@nsistent error covariance estimates.
large, there is a chance of observing landmarks outside the deDemonstration: The covariance error matrik*(k + 1) can
fined local area. This observation will be discarded since th&g rewritten as follows:
cannot be associated with any local landmarks. In such case the ., "
resulting filter will not be optil}r/1al since this information is not Pr(k+1) = P(k) — AP" = P(k) - AP +§ 37)
incorporated into the estimates. Although these marginal langhere
marks will not incorporate significant information since they are

(36)

far from the vehicle, this situation can be easily avoided with ap- APt — | &FPr AP”D} = AP —§,
propriate selection of the size of the regions and hysteresis band. L APpp &
Fig. 3 presents an example of the application of this approach. AP — APpp APpp } >0
The vehicle is navigating in the central regio@nd if it never | APpp APpp |~
leaves this region the filter will maintain its position and the [ & ]
local map with a cost of a SLAM of the number of features in 6= & APgp 2 0. (38)

the local area formed by the nine neighboring regions. ) N S
The matricesA P andy: are positive semidefinite since

IV. SUBOPTIMAL SLAM AP — 2}12,;,, i}]jp,) —Ww.5. W' 0and
A. Algorithm Description ppP DD |
APpp =Wp -Sp-WS > 0. (39)

In this section we present a series of simplifications that can

further_l’educe the Computationally CompleXity of SLAM This As given in (37), the total update is formed by the Opt|ma|
suboptimal approach reduces the computational requiremegglate plus an additional positive semidefinite noise matrix

by considering a subset of navigation landmarks present in {ia@ matrix will increase the covariance uncertainty
global map. Itis demonstrated that this approach is conservative

and consistent, and can generate close to optimal results when Prk+1)=Pk+1)+6 (40)
combined with the appropriate relative map representation.
Most of the computational requirements of the EKF ar
needed during the update process of the error covariart
matri>§. Once an observation i_s being validateq and associat_ed P*(k+1) < P(k+1) < P(k). (41)
to a given landmark, the covariance error matrix of the states is
updated according to Finally, the submatrices that need to be evaluatedrag,
Ppp, and Ppp. The significance of this result is th#t, p is
P=P— AP not evaluated. In general, this matrix will be of high order since
AP =W .S -WwT. (33) itincludes most of the landmarks.
The fundamental problem becomes the selection of the parti-

The time subindexes are neglected when possible to simpliign £ andD of the state vector. The diagonal of maté> can

the equations. The state vector can be divided in two groups, fifeevaluated on-line with low computational cost. By inspecting
Preserved P” and the DiscardedP” states the diagonal elements @k P we can see that many terms are

very small compared to the corresponding previous covariance
Y |:Xp:| Xp € RNP Xp e RNp value in the matrixP. This indicates that the new observation
- )

en the suboptimal update éf* becomes more conservative
an the full update

Xp X e RN N=Np+Np"~ (34) does not provide a significant information contribution to this
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Fig. 4. Full covariance matrix divided into the covariance blocks
corresponding to the Vehicle and Preserved landmarks states) and
Discarded landmarks statéd ). The cross-correlation covariance between
the Preserved and Discarded states are fully updated as shown in grey. Finally,
the cross correlation between the elements of the states corresponding to the
“Discarded landmarks” are not updated as shown in white.

Xa Xi Xb

particular state. This is an indication to select a particular stdtg. 5. Local reference frame. The reference frame is formed with two
as belonging to the subsér. landmarks. The observations are then obtained relative to this frame.
The other criterion used is based on the value of the actual
covariance of the state. If itis below a given threshold, it can liees and real-time mission planning, the computation require-
a candidate for the subvectfr. ments can be maintained within the bounds of the on-board re-
In many practical situations a large number of landmarks caources.
usually be associated to the subvectar This will introduce
significant computational savings sinfg p can potentially be- B. Relative Map Representation
come larger tha®p . The cross correlatioRrp andPpp are

still maintained but are in general of lower order as can be The suboptimal approach presented becomes less conserva-
. - 9 aR’e when the cross correlation between the non relevant land-
preciated in Fig. 4.

Finally, the selection criteria to obtain the partition of the Statrgarks becomes small. This is very uniikely if an absolute ref-
Y. . . . part _ erence frame is used, that is when the vehicle, landmarks and
vector can be given with the union of the followidgsets: . . :
observation are represented with respect to a single reference
I ={i: AP(i,i) < ¢1 - P(i, i)} frame. The cross correlc_';ltions between Ian_dmarks of different
I —fi: Plii =1 UI 42 regions can be substantially reduced by using a number of dif-
2=t Pli1) <exp I=LUL. (42)  ferent bases and making the observation relative to those bases.
With this representation, the map becomes grouped into five
constellations. Each constellation has an associated frame based
AP*(i,5) =0 Vi,j:i€l and jelI on two landmarks that belong to this constellation. The land-
. . S . marks forming the bases are selected as a function of the range
AP*(i,7) =AP(i,j5) Vi,j:i¢l orjg¢l. (43 S i
(@) (G,5) Vijid i¢ (43) of the external sensor. The objective of the base manager is to

The error covariance matrix is updated with the simplifie@reate a new base when the old base is no longer within range

ThenAP* is evaluated as follows:

matrix AP of the sensor. The ’base’ landmarks that define the associated
frame are represented in a global frame. All the other landmarks
Pk+1,k+1)=Plk+1,k)— AP". (44) that belong to this constellation are defined in the local frame.

For a particular constellation, the local frame is based on two

The practical meaning of the sét, is that with the appro- pase landmarks:
priate selection of; negligible small updates of covariances can
be ignored. As mentioned before, the selectioh akquires the L, = |:$a:| L, = |:-Tb:| ' (45)
evaluation of the diagonal elements of the matxik. The eval- ’ Yo
uation of theA P(4, ¢) elements requires a number of operations o o ) ] )
proportional to the number of states instead of the quadratic re/AS Shownin Fig. 5, itis possible to define two unitary vectors
lation required for the evaluation of the complete matie.  that describe the orientation of the base frame:

Ya

The second subset defined Byis related to the states whose 1
covariances are small enough to be considered practically zero. r1 :m (Lo — La)
In the case of natural landmarks they become almost equivalent 1
to beacons at known positions. The number of elements in the = 5 5
set/, will increase with time and can eventually make the com- Vs = a)® + (s = ya)
putational requirements of SLAM algorithms comparable to the . [xb - xa} _ {'/11}
standard beacon localization algorithms. Yo — Ya V12

Finally, the magnitude of the computation saving factor de- {1/21} B [—1/12

pends on the size of the sBtWith appropriate exploration po- } » {v2,m) =0. (46)

V22 V11
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The rest of the landmarks in this particular constellation are " #F"r- m
represented using a local frame with origin/atand axes par- "
allel to the vectors; andi,

_ | T a __ gz
L=|v]. =] (@7)
with

& =((L;i — La),11) = (L; — Lg)T -1

ni =((Li — La),v2) = (Li — Lo)T - 15, (48)

The following expression can be used to obtain the absolute
coordinates from the relative coordinate representation

Li=Lo+ G v +mn-va. (49)

Assuming that the external sensor returns range and beari’(ﬁ%el
the observation functions are

hi ILZ — XL — Rz - (COS(ﬁZ),Sln(ﬁZ)) =0
Bi =i + ¢ — g
c: object angle w.r.t. laser frame

R;: object range w.r.t. laser
(Xr,9) =(zr,yrL,$): vehicle states. (50)

6. Outdoor environment used for this experiment. This is a large area with
rent type of surfaces and different levels.

Finally
hi=Lo+ ¢ -vi+mi-v2e—Pp— R
- (cos(f3:),sin(B;)) = 0. (51)

With this representation the landmark defining the bases
will become the natural “Preserved” landmarks. Provided
that the landmarks representing the basis are visible in_a B ) ) ) ) )
sufcient number of observations, the entire observation $a, £ Wi s used fr e experiment s scupped wih 2 Sk aser
may be regarded as being contaminated by white noise. Td&ring and back wheel velocity encoders.

Gaussian characteristics of the observations cause the relative
elements of the constellation to be uncorrelated with the other
constellation relative elements. The only landmarks that will
maintain strong correlation will be the ones defining the bases
that are represented in absolute form.

V. EXPERIMENTAL RESULTS

The navigation algorithms presented were tested in the out-
door environment shown in Fig. 6. A standard utility vehicle
was fitted with dead reckoning sensors and a laser range sensor
as shown in Fig. 7.

The landmarks detection and extraction process is essential & o1 82 83 a4 05 86 a7 o5 as
for SLAM. In t.hIS partlc_ular application, the most Common reli:i .8. Tree profile and trunk approximation. The dots indicate the laser range
evant feature in the environment were trees. The profiles of treg@ pearing retums. The filter estimates the radius of the circumference that
were extracted from the laser, as shown in Fig. 8, and the megtroximates the trunk of the tree and center position.
likely center of the trunk was estimated. A Kalman filter was
implemented to reduce the errors due to the different profiléself. The accuracy of this map is determined by the initial ve-
obtained when observing the trunk of the trees from differehicle position uncertainty and the quality of the combination of
locations. dead reckoning and external sensors. In this experimental run an

The vehicle was started at a location with known uncertainigitial uncertainty in coordinates x and y was assumed. Fig. 10
and driven in this area for approximately 20 min. Fig. 9 presemsesents the estimated error of the vehicle position and selected
the vehicle trajectory and navigation landmarks incorporatéghdmarks. Although the vehicle was equipped with a kinematic
into the relative map. This run includes all the features in th@PS to evaluate the ground truth it was not accurate enough
environment and the optimization presented in Section lll. Thizie to poor satellite availability. This is a common problem in
system built a navigation map of the environment and localizélis type of environment. Nevertheless the information gathered
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Fig. 11. Final estimated error of all states. The maximum error is
Fig. 9. Vehicle trajectory and landmarks. The,*“x,” and “+” show the approximately 60 cm.
estimated position of objects that qualified as landmarks for the navigation

system. The§” are the landmarks more frequently detected. The dots are laser
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Fig. 10. History of selected state’s estimated errors. The vehicle states showl_
oscillatory behavior with error magnitude that is decreasing with time due to
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Fig. 12. Vehicle and local areas. This plot presents the estimated trajectory and
navigation landmark estimated position. It also shows the local regibwith

its surrounding regions. The local stat¥s, are the ones included in the nine
regions shown enclosed by a rectangle in the left side of the plot.

he compressed algorithm was implemented using local re-

the learning of the environment. The landmarks always present an exponer@i®ns of40 x 40 meters square. These regions are appropriate
decreasing estima}t_ed error with a lower limit bounded by the initial uncertaingyr the laser range sensor used in this experiment. Fig. 12 shows
of the vehicle position. . . .

part of the trajectory of the vehicle with the local area composed

of 9 squares surrounding the vehicle. To verify the fact that the
was used to verify that actual errors were consistent with thégorithm proposed maintains and propagates all the informa-
filter-estimated errors. The states corresponding to the vehitilen obtained, the history of the covariances of the landmarks
present oscillatory behavior displaying the maximum deviatiomere compared with the ones obtained with the full SLAM al-
farther from the initial position. This result is expected sincgorithm. Fig. 13 shows a time evolution of standard deviation of
there is no absolute information incorporated into the proce$sw landmarks. The dotted line corresponds to the compressed
The only way this uncertainty can be reduced is by incorpfilter and the solid line to the full SLAM. It can be seen that the
rating additional information not correlated to the vehicle poséstimated error of some landmarks are not continuously updated
tion, such as GPS position information or recognizing a beacwith the compressed filter. These landmarks are not in the local
located at a known position. It is also appreciated that the crea. Once the vehicle makes a transition, the system updates all
variances of all the landmarks are decreasing with time. Thise landmarks performing a full SLAM update. At this time, the
means that the map is learned with more accuracy while the \@admarks outside the local area are updated in one iteration and
hicle navigates. The theoretical limit uncertainty in the case i estimated error become exactly equal to the full SLAM. This
no additional absolute information will be the original unceris clearly shown in Fig. 14 where at the full update time stamps
tainty vehicle location. Fig. 11 presents the final estimation dfoth estimated covariances become identical. Fig. 15 shows the
the landmarks in the map. It can be seen that after 20 min ttiéference between full SLAM and compressed filter estimated
estimated error of all the landmarks are below 60 cm. landmarks covariance. It can be seen that at the full update time
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Fig. 13. Landmark estimated position error for full SLAM and compressed 3 il ™ 1
filter. The solid line shows the estimated error evaluated with the full SLAM !

algorithm. This algorithm updates all the landmarks with each observation. The 240 260 280 300 320 340 360 380

dotted line shows the estimated error evaluated with the compressed filter. The Time

landmark that are not in the local area are only updated when the vehicle leaves

the local area. At this time a full update is performed and the estimated erfig. 15. Estimated error differences between full SLAM and compressed filter.

becomes exactly equal to full SLAM. The estimated error difference between both algorithms becomes identically
zero when the full update is performed by the compressed algorithm.
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Fig. 14. Landmark estimated position error for full SLAM and compressed
filter (enhanced). This plot presents a clear view the instant when tRéy. 16. Total number of states and states used and not updated. The figure
compressed algorithm performed a full update. At this time (165) the full SLAresents the total number of states with a solid black line. This number is
M (solid line) and the compressed algorithm (solid lines with dotes) repadricreasing because the vehicle is exploring new areas and incorporating new
same estimated error as predicted. landmarks. The states used by the system are represented in grey. The number
of states not used is represented with"‘In this run, the system used most of

. . . . the states available.

stamps the difference between the estimation using both algo-

rithms becomes zero as demonstrated in this paper. This demon- H 2 T

strates that while working in a local area it is possible to main- ;
tain all the information gathered with a computational cost pro- .m . i
portional to the number of landmarks in the local area. This in-
formation can then be propagated to the rest of the landmarks in
the map without any loss of information.

The next set of plots present a comparison of the performance
of the suboptimal algorithm proposed in Section IV using the
relative map representation with full SLAM. Figs. 16 and 17
present two runs, one using most of the states and the other with Ei
only 100 states. The plots show that the total number of states
used by the system grows with time as the vehicle explores new
areas. It is also shown the number of states used by the system
in grey and the number of states not updated with starsifi
the first run, very conservative values for the constgnand Fig. 17. Total number of states and states used and not updated. In this run a
I, were selected so most of the states were updated with eHEpimum number of states was fixed as constraint for the suboptimal SLAM

. orithm. This is appreciated in the gray plot where the maximum number
observation. The second run corresponds to a less conserv tes remains below a given threshold. The number of states not updated
selection plus a limitation in the maximum number of statescreases with time.
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number of states. These results are similar to the ones using most of the states. 0 ‘ : : :
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This result shows that the proposed algorithm is not only consistent but close to subsamples

optimal when used with the appropriate map representation.

Fig. 21. Estimated error history of the bases with reduced number of states.

Fig. 17 shows that a large number of states were not updated at
every time step resulting in a significant reduction in the com- ; :
putational cost of the algorithm. From Figs. 18 and 19 it can
be seen that the accuracy of the SLAM algorithm has not been
degraded by this simplification. These figures present the final
estimated error of all the states for both runs. It is noteworthy
that only the bases are represented in absolute form. The other
states are represented in relative form and its standard deviation ;=
becomes much smaller. This can also be appreciated in Figs.20 = 1 !
and 21 that present the estimated error history of the states se- ! i
lected as bases. The constellation map and vehicle trajectory of
part of the run are shown in Fig. 22. The systems build five con-
stellations in this area. The intersection of each group of bases
is represented with a*” and the landmark used as bases with a : e —
“ 0.” All the other relative landmarks are represented with “

There is one important remark regarding the advantage Rig. 22. Constellati_on map an_d vehiclg trajectory. Five constellations were
the relative representation with respect to the simplification pr%r-e ated by the algorithm. The intersection of the bases are presented with a

+,” and the other side of the segment with@™The relative landmarks are

posed: Since the bases are in absolute form they will maintaéresented with+" and its association with a base is represented with a line
a strong correlation with the other bases and the vehicle stai@/ging the landmark with the origin of the relative coordinate system.
They will be more likely to be chosen as “preserved” landmarks
since the observations will have more contribution to them thanlt is also important to remark that with this representation the
the relative states belonging to distant bases. In fact the stag@splification becomes less conservative than when using the
that will be chosen will most likely be the bases and the statabsolute representation. This can clearly be seen by looking at
associated with the landmarks in the local constellation. the correlation coefficients for all the states in each case. This
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Fig. 23. Correlation coefficients for the relative representation. Each blol._k . . . .
represents the cross-correlation coefficient of the elements of the differ iy 25.  Long trajectory using the Compressed SLAM algorithm. This plot

constellations. The block in the right corner contains the states correspond‘i’r’iﬁsemS arunin a very large area where 18 constellations were created.

to the vehicle and the bases. It can be seen that the cross correlation
between different constellations is very small. It is also clear the nonzero
cross correlation between the bases and the different constellations. Thes P el N v LA (R Dy el il
correlations are updated by the suboptimal filter.
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s Fig. 26. Cross correlation coefficients. The plot shows 18 constellation and a

: . . ) . blockin the right hand corner containing the correlation coefficient for the bases

Fig. 24. Correlation coefficients for the absolute representation. In this cagey the vehicle states. It can be appreciated that the cross correlation between

the map appears completely correlated and the suboptimal algorithm Wk ye|ative states of the different bases is very small.
generate consistent but more conservative results.

final deviations (1 sigma)
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is shown in Figs. 23 and 24 where the correlation of the rela- T
tive and absolute map, respectively, is presented. In Fig. 23 each 08+
block of the diagonal corresponds to a particular constellation P o
and the last block has the vehicle states and the bases. The dif-
ferent constellations becomes decorrelated from each other and
only correlated to the first block whose cross correlation are
updated by the suboptimal algorithm presented. These results
imply that with the relative representation the cross correlation
between constellations becomes zero and the suboptimal algo-
rithm presented becomes close to optimal. This is not the case 01f---
for the absolute representation as shown in Fig. 24 where all the
states maintained strong cross correlations.

Finally, Fig. 25 presents the results of a 4—km trajectory using
the compressed algorithm in a large area. In this case theregge 7. Final estimated error of the 500 states. It can be seen that the
approximately 500 states in the global map and their final estiaximum estimated error is smaller than 0.7 m.
mated errors are shown in Fig. 27. The system creates 18 dif-
ferent constellations to implement the relative map. The crodbe local areas are significantly smaller than the global map.
correlation coefficients between the different constellations bé/hen compared with the full SLAM implementation the algo-
come very small as shown in Fig. 26. This run is useful tothm generated identical results (states and covariance) with the
demonstrate the advantages of the compressed algorithm sexdeantage of having very low computational requirements. For
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larger areas the algorithm becomes more efficient since the cbee nonlinear observation equatiafr) maps the states to the
is basically function of the number of local landmarks. These rebservation vectot.

sults are important since it demonstrates even in very large areaghe effect of the input signal noise is approximated by a linear
(> 10000 landmarks) the computational limitation of SLAMrepresentation

can be overcome with the compressed algorithm and appropriate

selection of local areas. F(X(K), u(k) +vu(k)) + 75 (k) EF(X(/f) u(k))
+ (k)
VI. CONCLUSION (k) =Jy - yu(k) + 75 (k)
The paper presented efficient algorithms for real-time imple- _or
mentation of SLAM. In particular a compressed algorithm was Ju T ou X=X (k) u_u(k)'

introduced that is very attractive in applications where high fre- (53)
quency external sensor information is available or when the ve-

hicle navigates for long periods of time in a local area. It iS 1o matrix noise characteristics are assumed zero mean and
shown that the information gathered in a local area can be

Phite
corporated into the vehicle states and the local map with a com-

putational cost similar to a standard local SLAM algorithm and g, E{vs(k)} = E{vu(k)} =E{m.(k)} =0
can then be transferred to an arbitrarily large global map with T .
the implementation of full SLAM algorithm in only one itera- By () - v ()} =615 - Qs (1)
tion without loss of information. E{yu () - v ()} =6 5 - R(i)

A simplification to the SLAM algorithm has also been pro- E{vu (i) - 7)Y =65 - Quld)
posed with theoretical proofs of the consistency of the approach. E{mm(i) -7 ()} =

Furthermore, it has also been shown with experimental results 0

that, by using a relative map representation, the algorithm be- 6ij = { 0 i#J
comes very close to optimal. With this approach the user can al- 1oi=j

locate a maximum number of landmarks, according to the com- E{v(@) 7T} =6 (Ju- Qu) - T3 + Qs(4))
putational resources available, and the system will optimally se- =6, ; - Q(3). (54)

lect the ones that provide the maximum information.

Future work will address the extension of the compressionAn EKF observer based on the process and output models
filter results in decentralized SLAM where different platformgan be formulated in two stages: Prediction and Update stages.
can update their own map with a particular sensor and th&he Prediction stage is required to obtain the predicted value of
transfer all the information gained to the rest of the system. the statesY and its error covarianc® at timek based on the

The incorporation of high frequency information increasdaformation available up to timég — 1,
the exploration range of the SLAM algorithm. This is also an-
other important area of research. If no absolute position data is X(k+1,k) =F(X(k, k),u(k))
made available, the system will not be able to navigate for ex- Pk +1,k) =J - P(k,k) - JT + Q(k). (55)
tended periods of time in new areas without returning to known
areas. Although standard sensors allow SLAM to performin sig-The update stage is function of the observation model and the
nificantly large areas, in order to extend this range there are tw8ariances
important problem to be solved: The reregistration (association)

of a known revisited area and the back-propagation of the cor- S(k+1)=H-P(k+1,k)-H (k+1)+ R(k+1)
rections once a Iarge loop is traversed. The fI.I’St problem looks Wk +1) =P(k+1,k) -HT(k +1) -S—l(k +1)
solvable working with the geometry of the environment [25], or
using more complex data association methods [23]. The other Yk +1) =Z(k+1) = M(X(k +1,k))
problem is not solved yet and subject of current research. Xk +1,k+ 1) =Xk +1,k)+W(k+1) -9k +1)
Pk+1,k+1)=Pk+1,k)—W(k+1)-S(k+1)
APPENDIX A Wk + 1)T (56)
A. Modeling where
Under the general EKF framework we can have nonlinear
X : i oF
models for the process and observations in the form: J=J(k)= = ,
oX N
(X (F)u(k))
Xk+1) =F(XKk),ulk w(k k
(b + 1) =FCXE), (k) + 708 + 97 (1) ) -
2(k) =h(X(k)) + (k) (52) IX | xxw)

whereX are the states of the system, in this case position are the Jacobian matrices of the vector functidtis, ) and
and orientationp. F'(+) is a non linear function that propagates:(«) with respect to the stat¥ andR is the covariance matrix
the states based on the inputaind the state’s previous value.characterizing the noise in the observations.
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APPENDIX B The subset of all the valid indexes in a row or column will be
ngcated with ”;’. The first stage requires the evaluation of the

The general form of the update for the states belonging to t
9 ub ging matricess and&

global area will have the following form:

Xnew old + de (58) K :HaTS*lHa

. . . =P, 4. 66
In this section we present the evaluationidf, to update the ¢ & (66)

vect(r)]r)xbt r(;:\ftert :g;:{al updrzltetS ;vefrte perfornb1ed I%ctn& L, thaﬁ Most of the elements of the Jacobian matrix of the observation
IS, when the vectalt, 1S updated alter one observation, We havfy i, qion are zero. Assuming that only one landmark is being

dXy =W(k+1) - (h(Xo(k +1,k)) — Z(k + 1)) observed, we can defing,,; as index subsets that correspond
Wk +1) -0k +1) (59) to the vehicle states and the observed landmark states. Then the
o ) matrix H will have the following null-matrices:

Since the Kalman gain matrix can be partitioned in two main

components: Hy(:,4) =0 Vi, i ¢ions
H,(7,¢) =0 VY (j,2), t & tobs). (67)
W(k+1)={g(];+i)} ) (Ha(J,1) (J,4)s & dons)
vk +1) Considering that

Then the state update can be simplified as shown
K(ij) =0 V(”m])v () ¢ iobs Orj ¢ iobs
Xp(k+1,k+1) = Xp(k+1,k) - Wy(k+1)-9(k+1). (61) _ _ _
then evaluation of only requires the computation af

Finally, the update afterlocal updates are performed using o ) 3 )
ki, §) =Hg (4,)S ™ Ha (5, 5)
kil K :’i(iobsviobs) = HaT(iobsv :)S_lHa(zviobs)
Kokt kb +1) =Xy(k +1,5) - Z Wi(d —Ho (e ions) TS L Ho (s, dons)- (68)

=Xu(k+1,k) - Pb“(k’ k) Similar simplification can be done far

> e T
=k
CHP() - S7L6) - 0() (62) £(,5) =0 Vi, j¢&ions

5* 25(5, iobs) = Pa,a,(;a iobs)ﬁ* (69)
the expression can be simplified as follows:
The evaluation of the matrices given in (31) can also be sim-

Xylk+t,k+1t) = Xy(k+1t,k) — Pk, k) - 0(k +1) (63) plified by using a different representation fbr
with o=I+n (70)

kit—l then
Ok +1t) = oL i) - S7L() - 9(). (64)
2 He)- 70040 B(k) =1 + (k) = (I — €)1 + () — 1))
=l +7(k—1) = &k)r(k —1) — £(k)
w(k) =n(k—1) = §(kyn(k = 1) = §(k) (72)
The new subset,. involves all the states that were used in
previous observations or predictions. Then the following sim-
?ﬁflcatlons are possible:

APPENDIX C

Taking advantage of the sparseness in the local area.

As demonstrated, the maintenance of the auxiliary matric
in the compression algorithm involves products of matrices with _
dimensions not higher thaN,,, N, < N. In addition most of m(k=1)(54) =0 V j ¢ ice
these matrices are sparse. This fact can be exploited to improve EKY(:4) =0 ¥V j & ions. (72)
the efficiency of the algorithm. This is important since the local

Defining the two auxiliary variables andw:
updates are done at the rate of the external sensor.

To facilitate the representation of nonnull matrices a subma- A =¢(k)m(k —1)
trix A* can be defined according to* = M(¢,,%,), where A=A dee) = & ()T (k — 1)(Gobs s fee)
i, andi, are integer arrays that define subsets of indexes. With i) =0 V j ¢ i
this convention the submatri3d* can be expressed as function N ,
of the original matrixi/ as follows: © =k = 1)(:,lobs Udee)
&)( Lee) — ( iee) - A
M (r,€) = M(ia(r), (). (65) 52 obs) =0(:, dons) — §7(R). (73)
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Finally 7 can be updated using

[16]

71'(/6)(2, iobs U iee) :(D(;a iobs U iee)

The array index.. takes into account the increase in the pop-

w(k)(:, ) =m(k = 1)(:, ) 17

iee(k) :iobs U iee(k - 1)

v J ¢ {iobs U iee}
(74)
(18]

ulation of observed landmarks. Itincludes all the observed states
since the last full update. This implies that the computational 0[ |
the full update will have a computational cost proportional to
NZN., beingN, the number of elements ..

(20]
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